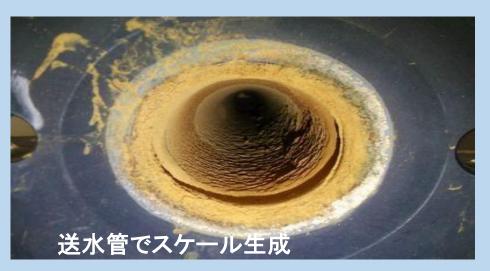


D4-4

焼却残渣単独埋立地浸出水の特性と 浸出水処理施設への影響に関する研究

福岡大学: 〇鳴海 賢治、松藤康司、立藤綾子、鈴木慎也

1. 研究背景


(背景)

- ①近年、埋立処分される廃棄物中の焼却残渣割合 75%(2014年)
- ②焼却残渣の埋立割合増加に伴い、飛灰埋立の増加にも繋がる

最終処分場施設においての問題

①浸出水高塩類濃度による問題

今後、焼却残渣の埋立割合の増加とともに問題が深刻化すると予想

焼却残渣単独埋立地(T最終処分場)の浸出水水質を調査

1. 研究背景

<u>調査施設 : T最終処分場</u>

(焼却残渣 **100%** 、主灰 7 : 飛灰 3)

飛灰の割合(埋立全体での割合) 30%

比較施設 : N最終処分場

(焼却残渣 70% 、主灰 4 : 飛灰 1)

飛灰の割合(埋立全体での割合) 14%

最終処分場	T最終処分場	N最終処分場	
埋立開始	2016年4月	1996年4月	
埋立構造	準好気性埋立構造	準好気性埋立構造	
埋立面積(m²)	25,000	180,000	
埋立容量(t)	516,000	2,380,000	
加入头色物	主灰:約11,033 t (2017.3)	焼却残渣70%	
処分対象物	飛灰:約4,879 t (2017.3)	破砕不燃物・その他30%	
浸出水処理能力	180m³/日	2,800m ³ /日	

焼却残渣の性状

(主灰)

T処分場とN処分場ほぼ同じ値 (飛灰)

T処分場のCa²⁺及び有機物濃度が高い

埋立処分場		T処分場		N処分場	
焼却残渣の名称		T主灰	T飛灰	S主灰	S飛灰
溶出 試験 (mg/L)	pH(-)	12.8	12.7	13.5	11.1
	COD	3.9	112.5	8.5	2.5
	T-N	0.8	45.1	2.6	3.2
	Cl	623	10,600	583	14,651
	Na	222	3,364	260	5,386
	K	69	3,135	116	5,069
	Ca	874	2,321	838	760

1. 研究背景

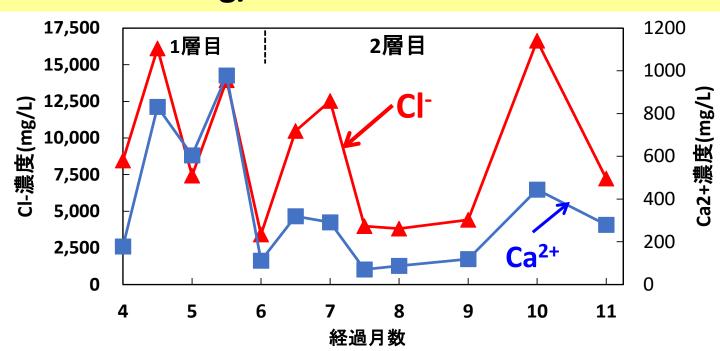
T処分場の浸出水水質の特性

CI-濃度:1層目:8,000~16,000mg/L

2層目:約4,000~7,000mg/L

N処分場 : 約3,000mg/L

Ca²⁺濃度 :1層目:600~1,000mg/L

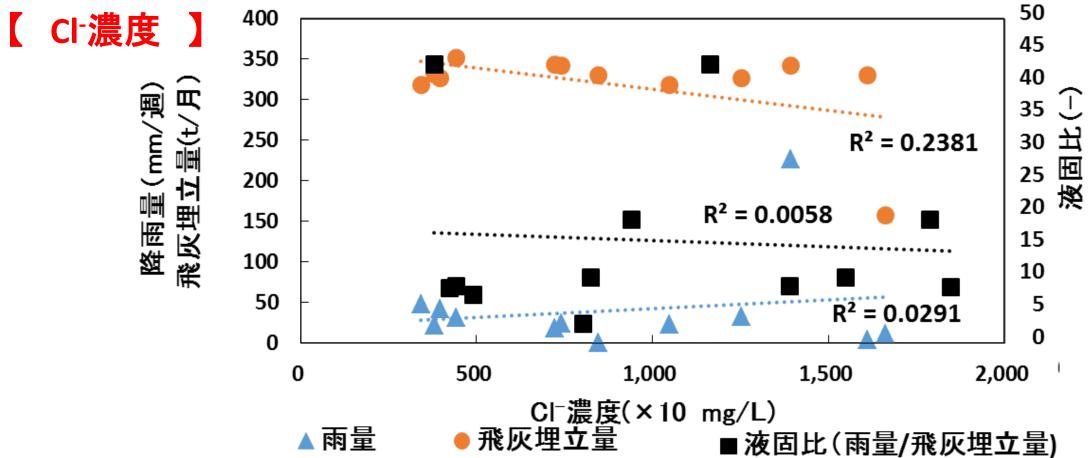

(処理施設計画原水600mg/L)

2層目:100~300mg/L

計画原水に比べて、

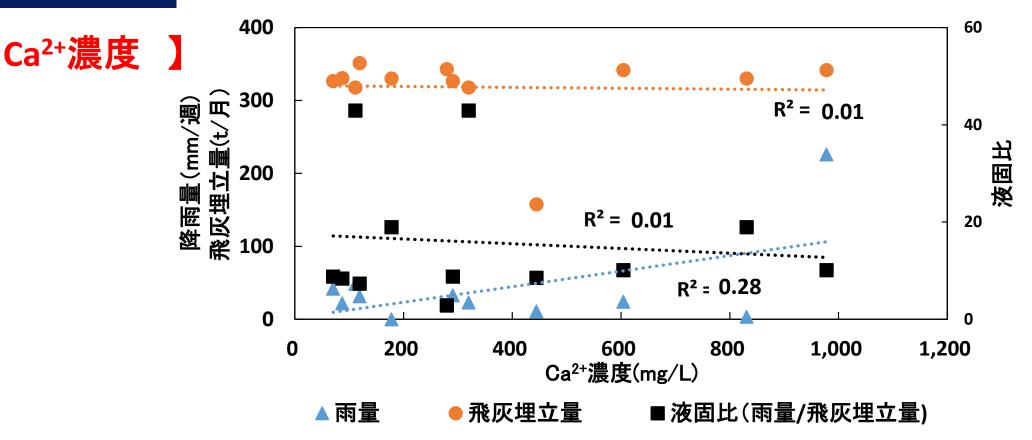
- ・CI-濃度は高い
- Ca²⁺濃度は低い

2. 研究目的及び検討方法


く目的 > 浸出水Ca²⁺濃度が予想より低い要因の検討

検討方法

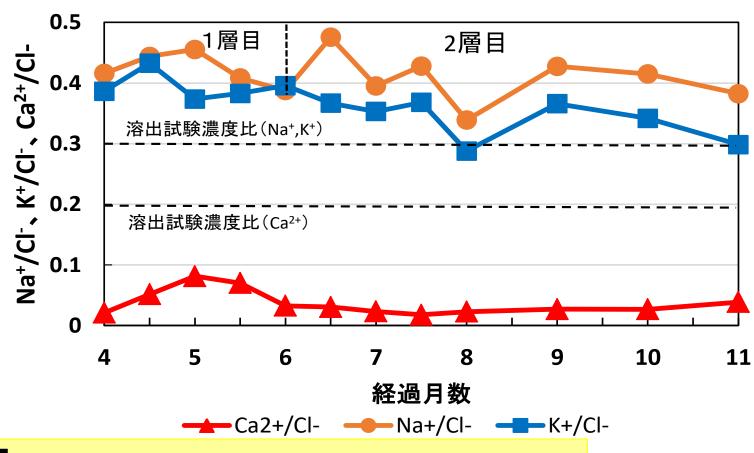
- ① 洗い出しの影響
 - →<u>塩類濃度と降雨量及び飛灰埋立量との相関関係</u>
- ② 洗い出し以外の影響
 - →<u>化学要因を受け難いCI⁻濃度に対するCa²+等の陽イオン濃度の比</u>
- ③ 1と2の影響の確認
 - →埋立1年後の混合灰溶出試験から1年間の溶出量を試算


①洗い出しの影響:降雨量及び飛灰埋立量と塩類濃度との相関関係

- ・CI-濃度と降雨量及び飛灰埋立量に相関は見られなかった
 - ・液固比(降雨量/飛灰埋立量)も相関は見られなかった

洗い出し以外の要因が寄与?

①洗い出しの影響:降雨量及び飛灰埋立量と塩類濃度との相関関係


・Ca²⁺濃度もCI⁻濃度同様に降雨量及び飛灰埋立量、液固比いずれの要因とも相関は見られなかった

洗い出し以外の要因が寄与→固化の影響?

②洗い出し以外の影響: CI-濃度に対する陽イオン濃度の比

【 Na⁺及びK⁺】 飛灰溶出試験濃度比(0.3)より 高い値

【 Ca²⁺ 】 飛灰溶出試験濃度比(0.2)の 半分以下

【 Ca²⁺濃度が低かった要因 】

- ① Na⁺及びK⁺等の陽イオンによってCa²⁺の洗い出しが抑制?
- ② Ca成分が埋立地内で不溶化?

③ 埋立1年間における溶解性塩類の溶出量

項目		Cl ⁻ (mg/L)	Ca ²⁺ (mg/L)	Na ⁺ (mg/L)	K ⁺ (mg/L)
溶出試験	T埋立灰0年(a)	3752	1143	1134	996
	T埋立灰1年後(b)	88(2%)	128(12%)	5(1%)	5(5%)
溶出量(C=a-b)		3664 (98%)	1015 (<mark>88%</mark>)	1129 (<mark>99%</mark>)	991 (<mark>95%</mark>)
CI¯濃度比	溶出試験(飛灰)	_	0.2	0.3	0.3
	T埋立灰(溶出量)		0.28	0.31	0.27
	T浸出水		0.04	0.41	0.36

・埋立1年間のCI-及び各陽イオン濃度の溶出率 : 88~99%

【 CI-に対する各陽イオンの濃度比 】

- •Na+、K+については飛灰溶出試験(0.3)の濃度比とほぼ等しい
- -T浸出水のCa²⁺はT埋立灰の溶出量の1/7
- ・混合灰からCa²+が溶出しているが、浸出水中のCa²+濃度は低い

4. まとめ

焼却残渣単独埋立地の浸出水の特性とその影響要因

- ① 浸出水はCI⁻濃度は高く、Ca²⁺濃度は計画原水より低い
- ② 洗い出し以外の要因が寄与(固化の影響)
- ③ 埋立1年後の混合灰の溶解性塩類溶出率は88~99%
- ④ 浸出水中のCa²⁺/Cl⁻は、混合灰溶出量の1/7

Ca²⁺が埋立地内での水和物やスケール形成による不溶化?

【今後の検討】 埋立地内でのCaスケール形成の有無 及びメカニズムの解明

